Causation, prediction, and search.

The authors address the assumptions and methods that allow us to turn observations into causal knowledge, and use even incomplete causal knowledge in planning and prediction to influence and control our environment. What assumptions and methods allow us to turn observations into causal knowledge, an...

Popoln opis

Bibliografske podrobnosti
Glavni avtor: Spirtes, Peter
Drugi avtorji: Glymour, Clark N., Scheines, Richard
Format: Licensed eBooks
Jezik:angleščina
Izdano: Cambridge, Mass. : MIT Press, ©2000.
©2000
Izdaja:2nd ed. /
Serija:Adaptive computation and machine learning.
Online dostop:https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=138589
Kazalo:
  • 1. Introduction and advertisement
  • 2. Formal preliminaries
  • 3. Causation and prediction : axioms and explications
  • 4. Statistical indistinguishability
  • 5. Discovery algorithms for causally sufficient structures
  • 6. Discovery algorithms without causal sufficiency
  • 7. Prediction
  • 8. Regression, causation, and prediction
  • 9. The design of empirical studies
  • 10. The structure of the unobserved
  • 11. Elaborating linear theories with unmeasured variables
  • 12. Prequels and sequels
  • 13. Proofs of theorems.