Causation, prediction, and search.

The authors address the assumptions and methods that allow us to turn observations into causal knowledge, and use even incomplete causal knowledge in planning and prediction to influence and control our environment. What assumptions and methods allow us to turn observations into causal knowledge, an...

Description complète

Détails bibliographiques
Auteur principal: Spirtes, Peter
Autres auteurs: Glymour, Clark N., Scheines, Richard
Format: Licensed eBooks
Langue:anglais
Publié: Cambridge, Mass. : MIT Press, ©2000.
©2000
Édition:2nd ed. /
Collection:Adaptive computation and machine learning.
Accès en ligne:https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=138589
Table des matières:
  • 1. Introduction and advertisement
  • 2. Formal preliminaries
  • 3. Causation and prediction : axioms and explications
  • 4. Statistical indistinguishability
  • 5. Discovery algorithms for causally sufficient structures
  • 6. Discovery algorithms without causal sufficiency
  • 7. Prediction
  • 8. Regression, causation, and prediction
  • 9. The design of empirical studies
  • 10. The structure of the unobserved
  • 11. Elaborating linear theories with unmeasured variables
  • 12. Prequels and sequels
  • 13. Proofs of theorems.