Microwave techniques in superconducting quantum computers /
The first of its kind, Microwave Techniques in Superconducting Quantum Computers introduces microwave and quantum engineers to essential practical techniques and theoretical foundations crucial for operating and implementing hardware in superconducting quantum processors. This practical resource cov...
Үндсэн зохиолч: | |
---|---|
Формат: | Licensed eBooks |
Хэл сонгох: | англи |
Хэвлэсэн: |
Boston :
Artech House,
[2024]
|
Онлайн хандалт: | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3854368 |
Агуулга:
- Intro
- Microwave Techniques in Superconducting Quantum Computers
- Contents
- Foreword
- Preface
- Acknowledgments
- Chapter 1 Introduction to Quantum Physics
- 1.1 A Brief History of Quantum Mechanics
- 1.2 Quantum Versus Classical Mechanics
- 1.3 Schrödinger Equation
- 1.4 The Machinery of Quantum Calculations
- 1.5 Solving the Schrödinger Equation
- 1.5.1 Time-Independent Schrödinger Equation
- 1.5.2 Standard Hamiltonians
- 1.6 Quantum Measurement
- 1.6.1 Collapse of the Wave Function
- 1.6.2 Expectation Value
- 1.6.3 Variance or Uncertainty
- 1.6.4 Uncertainty Principle
- 1.6.5 Heisenberg's Picture
- 1.6.6 Quantum Coherence
- 1.7 Quantum Entanglement
- References
- Chapter 2 Introduction to Quantum Computing
- 2.1 Quantum Computing
- 2.1.1 The Power of Quantum Computing
- 2.1.2 DiVincenzo Criteria
- 2.1.3 Applications of a Quantum Computer
- 2.2 Quantum Information Processing
- 2.2.1 Single-Qubit Gates
- 2.2.2 Two-Qubit Gates
- 2.2.3 Gate Fidelity
- 2.2.4 Quantum Circuits
- 2.2.5 Quantum Algorithm
- 2.2.6 Quantum Error Correction
- 2.2.7 Quantum Supremacy
- 2.3 Quantum Computing Platforms
- 2.3.1 Ions
- 2.3.2 Neutral Atoms
- 2.3.3 Semiconductor Qubits
- 2.4 Challenges and Opportunities in Quantum Computing
- 2.4.1 Technical Challenges of Scaling
- 2.4.2 Skillsets for Quantum Hardware Engineers
- References
- Chapter 3 Superconducting Qubits
- 3.1 Introduction to Superconductivity
- 3.1.1 Cooper Pairs
- 3.1.2 Types of Superconductors
- 3.1.3 Josephson Junction
- 3.2 Superconducting Qubit
- 3.2.1 Artificial Atom
- 3.2.2 Cooper Pair Box
- 3.2.3 Transmon Qubit
- 3.2.4 Qubit Coherence Time Scales
- 3.3 Qubit Control and Readout
- 3.3.1 Qubit Control
- 3.3.2 Qubit Readout
- 3.3.3 Spectroscopic Measurement Methods
- 3.3.4 Equivalent Circuit of Qubit-Cavity Coupling
- 3.3.5 Qubit Control and Readout in Practice
- 3.4 Two-Qubit System
- 3.4.1 Dispersive Two-Qubit Interactions
- 3.5 Calibration of Single-Qubit Operations
- 3.6 Testing the Performance of a Quantum Processor
- References
- Chapter 4 Microwave Systems
- 4.1 A Brief History of Microwave Engineering
- 4.2 Microwave Engineering
- 4.3 Microwave System Analysis
- 4.3.1 Microwave Link
- 4.3.2 Signal Degradation Factors
- 4.3.3 Nonlinear Effects in Microwave Systems
- 4.3.4 Dynamic Range
- 4.3.5 Error Vector Magnitude
- References
- Chapter 5 Microwave Components
- 5.1 Microwave Component Analysis
- 5.1.1 Tools for the Analysis of Microwave Components
- 5.2 Signal Generation
- 5.3 Signal Transmission
- 5.3.1 TEM-Mode Transmission Lines
- 5.3.2 Non-TEM Transmission Lines
- 5.3.3 Types of Transmission Lines
- 5.3.4 Microwave Connectors
- 5.4 Signal Processing
- 5.4.1 Performance Specifications of Microwave Components
- 5.4.2 Amplitude Manipulation
- 5.4.3 Frequency Manipulation
- 5.4.4 Phase Manipulation
- 5.5 Signal Detection
- 5.5.1 Homodyne Detection