Energy Materials Discovery Enabling a Sustainable Future.

Materials have the potential to be the centrepiece for the transition to viable renewable energy technologies and this book provides a perspective on the application of new technologies to this field as well as the broader techno-economic and social context.

Dettagli Bibliografici
Autore principale: Ozin, Geoffrey A.
Altri autori: Loh, Joel Y. Y.
Natura: Licensed eBooks
Lingua:inglese
Pubblicazione: Cambridge : Royal Society of Chemistry, 2022.
Accesso online:https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3310366
Sommario:
  • Intro
  • Title
  • Copyright
  • Contents
  • Chapter 1 Energy Makes the World Go Around
  • 1.1 Energy Preamble
  • 1.2 Energy Facts
  • 1.3 Energy Talking Points
  • 1.4 Energy Materials
  • 1.5 Energy Systems
  • 1.6 Energy Thought-tree
  • 1.7 Energy Materials Implementation Potential
  • 1.8 Energy Infrastructure Net-zero Emissions
  • 1.9 Energy Transition Financing
  • 1.10 Energy Transition Challenges
  • 1.11 Energy Integration
  • 1.12 Energy Takeaways
  • References
  • Chapter 2 How Does a Materials Chemist Think?
  • 2.1 Introduction
  • 2.2 Background Knowledge
  • 2.2.1 Physical Concepts
  • 2.2.2 Chemical Concepts
  • 2.2.3 Characterization Methods
  • 2.3 Teaching, Learning, and Practising Materials Chemistry: An Interdisciplinary Perspective
  • 2.4 What is Next?
  • 2.5 Why Do We Need to Discover New Materials?
  • 2.6 How a Chemist Makes Materials
  • It's Elemental
  • 2.7 Choosing a Synthetic Method
  • 2.8 Shape and Size are Everything
  • 2.9 How and Why Solids React
  • 2.10 How to Think About the Reactions of Solids
  • 2.11 Solid (1) + Liquid/Solution → Solid (2)
  • 2.12 Solid (1) → Solid (2)
  • 2.13 Solid (1) + Gas → Solid (2)
  • 2.14 Solid (1) + Solid (2) → Solid (3)
  • 2.15 Materials Reproducibility
  • 2.16 How Does a Chemist Build Functionality into an Energy Material?
  • 2.17 The Changing Face of Materials Chemistry
  • 2.18 Materials Synthesis Takeaways
  • References
  • Chapter 3 Energy Conversion Materials, Parts I and II
  • 3.1 Energy Conversion Materials, Part I
  • 3.2 Energy from the Sun
  • 3.3 Solar Energy Conversion
  • 3.4 Solar Electricity Basics
  • 3.5 Classes of Solar Cells
  • 3.6 What is Next?
  • 3.7 Transparent Silicon Solar Cells
  • 3.8 Luminescent Photovoltaics
  • 3.9 Tinted Transparent Silicon Solar Cells in Agrivoltaics
  • 3.10 Ion-transport Photovoltaics
  • 3.11 Schottky Solar Cell
  • In and Out of the Shadows
  • 3.12 Grid Parity
  • 3.13 Solar Thermionics Basics Part II
  • 3.14 Solar Thermochemistry Basics
  • 3.15 Solar Thermochemical Redox Cycles
  • 3.16 Solar Thermal Materials, Reactors, and Processes
  • 3.17 Solar Thermal Performance Indicators
  • 3.18 Photovoltaic-membrane Distillation
  • 3.19 Energy Conversion Materials, Parts I and II Takeaways
  • References
  • Chapter 4 Energy Conversion Materials, Part III
  • 4.1 Solar Electrochemistry, Photochemistry, Photoelectrochemistry
  • 4.2 H2O Photocatalysis
  • Aqueous and Gas Phase
  • 4.3 Chimie Douce: Green H2
  • 4.4 CO2 Photocatalysis
  • Aqueous and Gas Phase
  • 4.5 CO2 Photothermal Catalysis
  • 4.6 CO2 Electrocatalysis
  • 4.7 CO2 Biophotoelectrochemistry
  • 4.8 CO2 Biophotocatalysis
  • 4.9 Persistent CO2 Photocatalysis
  • Solar Fuels in the Dark
  • 4.10 Solar Battery Microswimmers for Persistent Catalysis
  • 4.11 Polymer Photocatalysis
  • 4.12 Plasmonic CO2 Photocatalysis
  • 4.13 Metamaterials for Photocatalysis
  • 4.14 Perovskite CO2 Photocatalyst
  • Case History
  • 4.15 Topological Catalysis