Natural photonics and bioinspiration /

Photonic structures occurring in biological tissues such as butterfly wings, beetle elytra or fish scales are responsible for a broad range of optical effects including iridescence, narrow-band reflection, large solid-angle scattering, polarization effects, additive color mixing, fluid-induced color...

Descripción completa

Detalles Bibliográficos
Autores principales: Mouchet, Sébastien R. (Autor), Deparis, Olivier (Autor)
Formato: Licensed eBooks
Lenguaje:inglés
Publicado: Norwood : Artech House, 2021.
Acceso en línea:https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3099626
Tabla de Contenidos:
  • Intro
  • Natural Photonics and Bioinspiration
  • Contents
  • Foreword by Serge Berthier
  • Foreword by Pete Vukusic
  • Introduction
  • CHAPTER 1 Photonics in Nature
  • 1.1 Colors in Nature
  • 1.2 Structural Colors in Nature
  • 1.3 Color Vision
  • 1.3.1 CIE 1931 RGB Color Space
  • 1.3.2 CIE 1931 XYZ Color Space
  • 1.3.3 CIE 1976 L*a*b* Color Space
  • 1.3.4 Modeling Animal Color Vision
  • 1.4 Bioinspired Photonics
  • References
  • CHAPTER 2 Diversity and Complexity of Natural Photonic Devices
  • 2.1 Thin Films: The Simple Beauty
  • 2.1.1 Light Wave Interference Pattern and Film Color
  • 2.1.2 Thin Film on Thick Slab
  • 2.1.3 Natural Thin Film Devices
  • 2.2 Multilayers: More Layers, More Effects
  • 2.2.1 Few-Layer Systems in Natural Organisms
  • 2.2.2 Periodic Multilayer Systems
  • 2.2.3 Curved Periodic Multilayer Systems
  • 2.2.4 Multilayer Systems with Variable Layer Thicknesses
  • 2.2.5 The Twists of Bouligand Structures
  • 2.3 Diffraction Gratings: Playing with the Second Dimension
  • 2.4 Photonics Crystals: Playing with Order at One, Two, or Three Dimensions
  • 2.4.1 One-Dimensional Photonic Crystals
  • 2.4.2 Two-Dimensional Photonic Crystals
  • 2.4.3 Three-Dimensional Photonic Crystals
  • 2.5 Disordered Structures: Imperfections May Be Helpful
  • References
  • CHAPTER 3 Color Additive Devices
  • 3.1 Color Mixing
  • 3.2 The Colorful Stripes of Argyrophorus argenteus Butterfly
  • 3.3 The Shiny Colors of Pollia condensata Fruits
  • 3.4 Photonic Crystal Grains in Beetle Scales
  • References
  • CHAPTER 4 Transparent Devices
  • 4.1 Enhanced Transparency in Insect Wings
  • 4.2 Enhanced Transparency in Insect Eyes
  • 4.3 Transparency Combined with Other Properties
  • References
  • CHAPTER 5 Liquid-Induced Structural Color Changes
  • 5.1 Unexpected Hydrophilicity
  • 5.2 The Story of the Chasseur Bleu
  • 5.3 The Blue Scales of Hoplia coerulea.
  • 5.4 The Khaki Green Elytra of Dynastes hercules
  • 5.5 The Switchable Golden Armor of Charidotella egregia
  • 5.6 The Swelling Multilayer of Tmesisternus isabellae
  • 5.7 A Short Review of Other Cases
  • References
  • CHAPTER 6 Other Forms of Structural Color Changes
  • 6.1 The Passive and Active Color Changes Induced by Vapors and Gases
  • 6.2 When Heat and Cold Induce Structural Color Changes
  • 6.3 pH-Driven Color Changes
  • 6.4 Color Changes Induced by Mechanical Forces
  • 6.5 Nervous and Endocrine Controls of Photonic Colors
  • References
  • CHAPTER 7 Solar Energy Harvesting Devices
  • 7.1 Light Harvesting in Plants
  • 7.1.1 Enhanced Light Absorption within Plant Chloroplasts
  • 7.1.2 Light Trapping at the Surface of Plant Integuments
  • 7.2 Structurally Enhanced Blackness
  • 7.3 UV Protection Strategies
  • 7.3.1 Waveguide Coupling and Energy Dissipation in Edelweiss Flower
  • 7.3.2 Backscattering in Avian Eggshells
  • 7.4 Thermoregulation and Solar Concentration in Butterflies
  • References
  • CHAPTER 8 Light Emission Management Devices
  • 8.1 Fluorescence Emission Control in a Beetle's Scales
  • 8.2 Light Guides for Counterillumination of Shadows Cast by Squid Eyes
  • 8.3 Light Extraction from Fireflies
  • References
  • CHAPTER 9 Design of Bioinspired Photonic Devices
  • 9.1 Methodology: From Field Observations to Modeling
  • 9.2 Simulation Methods
  • 9.2.1 One-Dimensional Transfer-Matrix Method
  • 9.2.2 Ray-Tracing and Beyond
  • 9.2.3 Finite-Difference Time-Domain Method
  • 9.2.4 Rigorous-Coupled Wave Analysis Method
  • 9.2.5 Other Numerical Prediction Methods
  • 9.3 Examples of Bioinspired Design Approaches
  • 9.3.1 The Concept of Spectral Richness
  • 9.3.2 The Concept of a Color-Switchable Mirror
  • References
  • CHAPTER 10 Fabrication of Bioinspired Photonic Devices
  • 10.1 Nanoimprint Lithography
  • 10.2 Self-Assembly of Spheres.
  • 10.3 Sol-Gel Methods
  • 10.4 Silicon Processing Technologies
  • 10.5 Atomic Layer Deposition
  • 10.6 Magnetron Sputtering
  • 10.7 Processes Involving Cellulose Nanocrystals
  • References
  • CHAPTER 11 Ideas at Work: Bioinspired Hygrochromic Devices
  • References
  • CHAPTER 12 Bioinspired Applications in Photonics
  • 12.1 Antireflective Coatings
  • 12.1.1 Self-Assembled Coatings Inspired by Moth Eyes
  • 12.1.2 Nanoimprinted Coatings from Cicada Wing Templates
  • 12.2 Sensing
  • 12.2.1 Gas and Vapor Sensing
  • 12.2.2 Butterfly Wings as SERS Substrates
  • 12.3 Light Harvesting
  • 12.3.1 Solar Concentrators
  • 12.3.2 Solar Light-Harvesting Structures
  • 12.4 Light Extraction
  • 12.5 Anticounterfeiting Patterns Inspired by Butterfly Scales
  • 12.6 Conclusion
  • References
  • About the Authors
  • Index.