Deep Learning Methods for Automotive Radar Signal Processing.

Ngā taipitopito rārangi puna kōrero
Kaituhi matua: Pérez González, Rodrigo
Hōputu: Licensed eBooks
Reo:Ingarihi
I whakaputaina: Göttingen : Cuvillier Verlag, 2021.
Urunga tuihono:https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2983906
Rārangi ihirangi:
  • Intro
  • 1 Introduction
  • 1.1 Goals and Contents of this Work
  • 2 Radar Fundamentals
  • 2.1 Continuous Wave Radar
  • 2.2 Mono-Frequent Continuous Wave Radar
  • 2.3 Linear Frequency Modulated Continuous WaveRadar
  • 2.4 Chirp Sequence Frequency Modulated ContinuousWave Radar
  • 2.5 Target Detection
  • 2.6 Phased Arrays
  • 2.7 Radar System Considerations
  • 3 Machine Learning Fundamentals
  • 3.1 Supervised Learning
  • 3.2 Artificial Neural Networks
  • 3.3 Training of Artificial Neural Networks
  • 3.5 Loss Functions
  • 3.6 Evaluation Metrics
  • 4 Classification of Vulnerable RoadUsers
  • 4.1 The Micro-Doppler Effect
  • 4.2 Single Frame Vulnerable Road Users Classification
  • 4.3 Joint Lidar and Radar Classification System
  • 4.4 Concluding Remarks
  • 5 Deep Learning Based Radar TargetDetection
  • 5.1 Detection in Frequency Domain
  • 5.2 Time Domain Detection
  • 5.3 Concluding Remarks
  • 6 Conclusion
  • 6.1 Outlook
  • Symbols
  • Acronyms
  • Bibliography
  • Own Publications