Computer science, algorithms and complexity /

Бібліографічні деталі
Інші автори: Kuzmiakova, Adele
Формат: Licensed eBooks
Мова:Англійська
Опубліковано: Burlington, ON : Arcler Press, 2020.
Онлайн доступ:https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2725240
Зміст:
  • Cover
  • Title Page
  • Copyright
  • ABOUT THE EDITOR
  • TABLE OF CONTENTS
  • List of Figures
  • List of Tables
  • List of Abbreviations
  • Preface
  • Chapter 1 Basic Techniques for Design and Analysis of Algorithms
  • 1.1. Introduction
  • 1.2. Divide-And-Conquer Algorithms
  • 1.3 Dynamic Programming
  • 1.4. Greedy Heuristics
  • 1.5. Sentinel Linear Search
  • 1.6. Backtracking
  • 1.7. Brute Force/Exhaustive Search
  • 1.8. Branch-And-Bound Algorithm
  • 1.9. Randomized Algorithm
  • 1.10. Branch-H And-Bound
  • Chapter 2 Computational Complexity Theory
  • 2.1. Introduction
  • 2.2. Brief History
  • 2.3. Computation Models
  • 2.4. Turing Machines
  • 2.5. Computational Problems
  • 2.6. Complexity Classes
  • 2.7. Relationships Between Complexity Classes
  • 2.8. Reducibility And Completeness
  • 2.9. Relativization of P Vs. Np Problem
  • 2.10. Polynomial Hierarchy
  • 2.11. Alternating Complex Classes
  • 2.12. Circuit Complexity
  • 2.13. Probabilistic Complexity Classes
  • 2.14. Interactive Models And Complexity Classes
  • 2.15. Kolmogorov Complexity
  • Chapter 3 Graph and Network Algorithms
  • 3.1. Introduction
  • 3.2. Tree Traversals
  • 3.3. Depth-First Search
  • 3.4. Algorithm
  • 3.5. Minimum Spanning Trees
  • Chapter 4 Cryptography
  • 4.1. Introduction
  • 4.2. Quantum Cryptography
  • 4.3. Transmission Media
  • 4.4. History Of Cryptography
  • 4.5. Cryptography Notions Of Security
  • 4.6. Cryptography Building Blocks
  • 4.7. Benefits Of Cryptography
  • 4.8. Drawbacks Of Cryptography
  • Chapter 5 Algebraic Algorithms
  • 5.1. Introduction
  • 5.2. Computational Methods
  • 5.3. Systems Of Nonlinear Equations And Their Applications
  • 5.4. Polynomial Factorization
  • Chapter 6 Parallel Algorithms
  • 6.1. Introduction
  • 6.2. Parallelizability
  • 6.3. Dispersed Algorithms
  • 6.4. Parallel Programming Models
  • 6.5. Parallel Algorithm Techniques
  • 6.6. Graphs
  • 6.7. Sorting
  • 6.8. Computational Geometry
  • 6.9. Numerical Algorithms
  • Chapter 7 Randomized Algorithms
  • 7.1. Introduction
  • 7.2. The Basic Principles Underlying The Construction Of Randomized Algorithms
  • 7.3. Randomized Increasing Constructions In Geometry
  • 7.4. Algorithm Analysis
  • 7.5. De-Randomization
  • 7.6. Example Where Randomness Helps
  • Chapter 8 Pattern Matching And Text Compression Algorithms
  • 8.1. Introduction
  • 8.2. Processing Texts Efficiently
  • 8.3. Choosing Ml Algorithms
  • 8.4. String-Matching Algorithms
  • 8.5. Two-Dimensional Pattern Matching Algorithms
  • 8.6. Suffix Trees
  • 8.7. Alignment
  • 8.8. Approximate Strinng
  • 8.9. Text Compression
  • 8.10. Research Issues And Summary
  • 8.11. Searching Compressed Dat
  • Chapter 9 Genetic Algorithms
  • 9.1. Introduction
  • 9.2. Initialization
  • 9.3. Selection
  • 9.4. Genetic Operations
  • 9.5. Heuristics Method
  • 9.6. Termination
  • 9.7. Examples Of Genetic Algorithms
  • 9.8. Underlying Principles In Genetic Algorithm
  • 9.9. Genetic Parameters
  • 9.10. Best Practices In Genetic Algorithm