Principles of Big Data /

গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Luna, Alvin Albuero De
বিন্যাস: Licensed eBooks
ভাষা:ইংরেজি
প্রকাশিত: Ashland : Arcler Press, 2020.
অনলাইন ব্যবহার করুন:https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2725218
সূচিপত্রের সারণি:
  • Cover
  • Title Page
  • Copyright
  • ABOUT THE AUTHOR
  • TABLE OF CONTENTS
  • List of Abbreviations
  • Preface
  • Chapter 1 Introduction to Big Data
  • 1.1. Introduction
  • 1.2. Concept of Big Data
  • 1.3. What is Data?
  • 1.4. What is Big Data?
  • 1.5. The Big Data Systems are Different
  • 1.6. Big Data Analytics
  • 1.7. Case Study: German Telecom Company
  • 1.8. Checkpoints
  • Chapter 2 Identifier Systems
  • 2.1. Meaning Of Identifier System
  • 2.2. Features Of An Identifier System
  • 2.3. Database Identifiers
  • 2.4. Classes Of Identifiers
  • 2.5. Rules For Regular Identifiers
  • 2.6. One-Way Hash Function
  • 2.7. De-Identification And Data Scrubbing
  • 2.8. Concept Of De-Identification
  • 2.9. The Process Of De-Identifications
  • 2.10. Techniques Of De-Identification
  • 2.11. Assessing The Risk Of Re-Identification
  • 2.12. Case Study: Mastercard: Applying Social Media Research Insights For Better Business Decisions
  • 2.13. Checkpoints
  • Chapter 3 Improving the Quality of Big Data and Its Measurement
  • 3.1. Data Scrubbing
  • 3.2. Meaning of Bad Data
  • 3.3. Common Approaches to Improve Data Quality
  • 3.4. Measuring Big Data
  • 3.5. How To Measure Big Data
  • 3.6. Measuring Big Data Roi: A Sign of Data Maturity
  • 3.7. The Interplay Of Hard And Soft Benefits
  • 3.8. When Big Data Projects Require Big Investments
  • 3.9. Real-Time, Real-World Roi
  • 3.10. Case Study 2: Southwest Airlines: Big Data Pr Analysis Aids on-Time Performance
  • 3.11. Checkpoints
  • Chapter 4 Ontologies
  • Introduction
  • 4.1. Concept of Ontologies
  • 4.2. Relation of Ontologies To Big Data Trend
  • 4.3. Advantages And Limitations of Ontologies
  • 4.4. Why Are Ontologies Developed?
  • 4.5. Semantic Web
  • 4.6. Major Components of Semantic Web
  • 4.7. Checkpoints
  • Chapter 5 Data Integration and Interoperability
  • 5.1. What Is Data Integration?
  • 5.2. Data Integration Areas
  • 5.3. Types of Data Integration
  • 5.4. Challenges of Data Integration and Interoperability in Big Data
  • 5.5. Challenges of Big Data Integration And Interoperability
  • 5.6. Immutability And Immortality
  • 5.7. Data Types and Data Objects
  • 5.8. Legacy Data
  • 5.9. Data Born From Data
  • 5.10. Reconciling Identifiers Across Institutions
  • 5.11. Simple But Powerful Business Data Techniques
  • 5.12. Association Rule Learning (ARL)
  • 5.13. Classification Tree Analysis
  • 5.14. Checkpoints
  • Chapter 6 Clustering, Classification, and Reduction
  • Introduction
  • 6.1. Logistic Regression (Predictive Learning Model)
  • 6.2. Clustering Algorithms
  • 6.3. Data Reduction Strategies
  • 6.4. Data Reduction Methods
  • 6.5. Data Visualization: Data Reduction For Everyone
  • 6.6. Case Study: Coca-Cola Enterprises (CCE) Case Study: The Thirst For Hr Analytics Grows
  • 6.5. Checkpoints
  • Chapter 7 Key Considerations in Big Data Analysis
  • Introduction
  • 7.1. Major Considerations For Big Data And Analytics
  • 7.2. Overfitting
  • 7.3. Bigness Bias