The prime number theorem /

At first glance the prime numbers appear to be distributed in a very irregular way amongst the integers, but it is possible to produce a simple formula that tells us (in an approximate but well defined sense) how many primes we can expect to find that are less than any integer we might choose. The p...

ver descrição completa

Detalhes bibliográficos
Autor principal: Jameson, G. J. O. (Graham James Oscar)
Formato: Licensed eBooks
Idioma:inglês
Publicado em: Cambridge ; New York : Cambridge University Press, 2003.
coleção:London Mathematical Society student texts ; 53.
Acesso em linha:https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=125089
Sumário:
  • 1. Foundations
  • 2. Some important Dirichlet series and arithmetic functions
  • 3. basic theorems
  • 4. Prime numbers in residue classes: Dirichlet's theorem
  • 5. Error estimates and the Riemann hypothesis
  • 6. "elementary" proof of the prime number theorem
  • App. A. Complex functions of a real variable
  • App. B. Double series and multiplication of series
  • App. C. Infinite products
  • App. D. Differentiation under the integral sign
  • App. E. O, o notation
  • App. F. Computing values of [pi](x)
  • App. G. Table of primes
  • App. H. Biographical notes.