The prime number theorem /

At first glance the prime numbers appear to be distributed in a very irregular way amongst the integers, but it is possible to produce a simple formula that tells us (in an approximate but well defined sense) how many primes we can expect to find that are less than any integer we might choose. The p...

Descrizione completa

Dettagli Bibliografici
Autore principale: Jameson, G. J. O. (Graham James Oscar)
Natura: Licensed eBooks
Lingua:inglese
Pubblicazione: Cambridge ; New York : Cambridge University Press, 2003.
Serie:London Mathematical Society student texts ; 53.
Accesso online:https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=125089
Sommario:
  • 1. Foundations
  • 2. Some important Dirichlet series and arithmetic functions
  • 3. basic theorems
  • 4. Prime numbers in residue classes: Dirichlet's theorem
  • 5. Error estimates and the Riemann hypothesis
  • 6. "elementary" proof of the prime number theorem
  • App. A. Complex functions of a real variable
  • App. B. Double series and multiplication of series
  • App. C. Infinite products
  • App. D. Differentiation under the integral sign
  • App. E. O, o notation
  • App. F. Computing values of [pi](x)
  • App. G. Table of primes
  • App. H. Biographical notes.