Causation, prediction, and search.

The authors address the assumptions and methods that allow us to turn observations into causal knowledge, and use even incomplete causal knowledge in planning and prediction to influence and control our environment. What assumptions and methods allow us to turn observations into causal knowledge, an...

Volledige beschrijving

Bibliografische gegevens
Hoofdauteur: Spirtes, Peter
Andere auteurs: Glymour, Clark N., Scheines, Richard
Formaat: Licensed eBooks
Taal:Engels
Gepubliceerd in: Cambridge, Mass. : MIT Press, ©2000.
©2000
Editie:2nd ed. /
Reeks:Adaptive computation and machine learning.
Online toegang:https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=138589
Inhoudsopgave:
  • 1. Introduction and advertisement
  • 2. Formal preliminaries
  • 3. Causation and prediction : axioms and explications
  • 4. Statistical indistinguishability
  • 5. Discovery algorithms for causally sufficient structures
  • 6. Discovery algorithms without causal sufficiency
  • 7. Prediction
  • 8. Regression, causation, and prediction
  • 9. The design of empirical studies
  • 10. The structure of the unobserved
  • 11. Elaborating linear theories with unmeasured variables
  • 12. Prequels and sequels
  • 13. Proofs of theorems.