Causation, prediction, and search.

The authors address the assumptions and methods that allow us to turn observations into causal knowledge, and use even incomplete causal knowledge in planning and prediction to influence and control our environment. What assumptions and methods allow us to turn observations into causal knowledge, an...

Celý popis

Podrobná bibliografie
Hlavní autor: Spirtes, Peter
Další autoři: Glymour, Clark N., Scheines, Richard
Médium: Licensed eBooks
Jazyk:angličtina
Vydáno: Cambridge, Mass. : MIT Press, ©2000.
©2000
Vydání:2nd ed. /
Edice:Adaptive computation and machine learning.
On-line přístup:https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=138589
Obsah:
  • 1. Introduction and advertisement
  • 2. Formal preliminaries
  • 3. Causation and prediction : axioms and explications
  • 4. Statistical indistinguishability
  • 5. Discovery algorithms for causally sufficient structures
  • 6. Discovery algorithms without causal sufficiency
  • 7. Prediction
  • 8. Regression, causation, and prediction
  • 9. The design of empirical studies
  • 10. The structure of the unobserved
  • 11. Elaborating linear theories with unmeasured variables
  • 12. Prequels and sequels
  • 13. Proofs of theorems.