Causation, prediction, and search.

The authors address the assumptions and methods that allow us to turn observations into causal knowledge, and use even incomplete causal knowledge in planning and prediction to influence and control our environment. What assumptions and methods allow us to turn observations into causal knowledge, an...

Descripció completa

Dades bibliogràfiques
Autor principal: Spirtes, Peter
Altres autors: Glymour, Clark N., Scheines, Richard
Format: Licensed eBooks
Idioma:anglès
Publicat: Cambridge, Mass. : MIT Press, ©2000.
©2000
Edició:2nd ed. /
Col·lecció:Adaptive computation and machine learning.
Accés en línia:https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=138589
Taula de continguts:
  • 1. Introduction and advertisement
  • 2. Formal preliminaries
  • 3. Causation and prediction : axioms and explications
  • 4. Statistical indistinguishability
  • 5. Discovery algorithms for causally sufficient structures
  • 6. Discovery algorithms without causal sufficiency
  • 7. Prediction
  • 8. Regression, causation, and prediction
  • 9. The design of empirical studies
  • 10. The structure of the unobserved
  • 11. Elaborating linear theories with unmeasured variables
  • 12. Prequels and sequels
  • 13. Proofs of theorems.